-999(n^2+1)=2000n

Simple and best practice solution for -999(n^2+1)=2000n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -999(n^2+1)=2000n equation:



-999(n^2+1)=2000n
We move all terms to the left:
-999(n^2+1)-(2000n)=0
We add all the numbers together, and all the variables
-2000n-999(n^2+1)=0
We multiply parentheses
-999n^2-2000n-999=0
a = -999; b = -2000; c = -999;
Δ = b2-4ac
Δ = -20002-4·(-999)·(-999)
Δ = 7996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7996}=\sqrt{4*1999}=\sqrt{4}*\sqrt{1999}=2\sqrt{1999}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2000)-2\sqrt{1999}}{2*-999}=\frac{2000-2\sqrt{1999}}{-1998} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2000)+2\sqrt{1999}}{2*-999}=\frac{2000+2\sqrt{1999}}{-1998} $

See similar equations:

| 5^2x-1=125^3x+2 | | 4x²-360=0 | | V=10-v | | 15x-12+6x=180 | | 8-5c=-9-9c-7 | | -x+5=-4x+14 | | 1/3(6y-9)=5 | | 4r-5=7+r | | 3-9u=7-8u | | 1.25=x+x^2 | | -15h-15+17h=-2h+17 | | (5x+2)(x-3)=12 | | x=7.248x0.19 | | 1/2(6x+4)=5(2-8) | | 33-18=3(x-9) | | 9n^2–25=0 | | .04x+.07(100-x)=5 | | 21m+86=m+5 | | 114+(2y)=90 | | 9d-9=15d-1+4 | | -8-v=10+2v | | 2x-3=3x-47 | | 5x-4=-4x-31 | | 18.8+12.3n-16.9n=-0.3+14.5n | | -8s=-7s-7 | | 67-y=213 | | 500=1500/x | | x-18=x+54 | | -2(1+2x)=7–x | | 144+(2y)=90 | | a+3=a+2 | | -17m+m+20=-12m-20 |

Equations solver categories